

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura	
Nombre completo	Sistemas Electrónicos
Código	DEAC-IMAT-225
Título	Grado en Ingeniería Matemática e Inteligencia Artificial
Impartido en	Grado en Ingeniería Matemática e Inteligencia Artificial [Segundo Curso]
Nivel	Reglada Grado Europeo
Cuatrimestre	Semestral
Créditos	6,0 ECTS
Carácter	Obligatoria (Grado)
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones
Responsable	José Daniel Muñoz Frías y Jaime Boal Martín-Larrauri
Horario de tutorías	Concertar cita por correo electrónico.

Datos del profesorado	
Profesor	
Nombre	José Daniel Muñoz Frías
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones
Despacho	D-219 (Alberto Aguilera, 25)
Correo electrónico	daniel@icai.comillas.edu
Profesores de laboratorio	
Profesor	
Nombre	Jaime Boal Martín-Larrauri
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones
Despacho	D-217 (Alberto Aguilera, 25)
Correo electrónico	Jaime.Boal@iit.comillas.edu
Profesor	
Nombre	Raul Robledo Cabezuela
Departamento / Área	Departamento de Ingeniería Eléctrica
Despacho	Despacho del Departamento de Electrónica, Automática y Comunicaciones (Alberto Aguilera, 25 - 2ª planta)
Correo electrónico	rrobledo@comillas.edu
Profesor	
Nombre	Romano Giannetti
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones

Despacho	D-221 (Alberto Aguilera, 25)
Correo electrónico	Romano.Giannetti@iit.comillas.edu

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

La integración cada vez más estrecha de la inteligencia artificial con el entorno físico, los denominados sistemas ciberfísicos, está tranformando mútiples industrias. Esta asignatura cubre los fundamentos de sistemas empotrados mixtos analógico/digitales, sobre los que se construyen aplicaciones más avanzadas como los robots móviles que aumentan la flexibilidad de los procesos de fabricación, los vehículos autónomos o los sistemas de monitorización y control de la red eléctrica.

Al finalizar el curso, los alumnos serán capaces de diseñar sistemas compuestos por una parte analógica de captación y acondicionamiento de señal, un módulo de procesamiento digital basado en un ordenador de placa única (*Single Board Computer* o SBC, en inglés) programado en Python, en concreto una Raspberry Pi, y varios actuadores.

Prerequisitos

Fundamentos de programación en Python.

Competencias - Objetivos

Competencia	ns
GENERALES	
CG04	Conocimientos básicos sobre el uso y programación de los ordenadores, sistemas operativos, bases de datos y programas informáticos con aplicación en ingeniería.
ESPECÍFICAS	
CE12	Conocimiento de los fundamentos y beneficios de los distintos paradigmas de programación para saber aplicarlos en cada problema particular para maximizar su eficiencia computacional y distinguir la diferencia que existe entre los lenguajes de programación nativos e interpretados.
CE34	Capacidad para diseñar sistemas electrónicos mediante la integración de sensores y actuadores comerciales, tanto analógicos como digitales, con un ordenador de placa única (SBC).

Resultad	os de Aprendizaje
RA1	Conocer las diferencias entre sistemas empotrados con procesado en tiempo real y sistemas de computación normal; saber especificar las necesidades de configuración de un sistema empotrado (capacidad de procesado, entradas/salida, memoria, etc.)
RA2	Conocer las capas de software de los sistemas basados en microprocesadores (firmware, sistema operativo, etc.)
RA3	Saber utilizar de forma básica un sistema operativo tipo Unix: shell de comandos, estructura del sistema de ficheros, comandos principales, conexiones remotas y sistema gráfico

RA4	Saber aplicar los conocimientos genéricos de programación al entorno del microprocesador (Raspberry Pi); conocer y utilizar correctamente las librerías Python específicas de entrada/salida y comunicaciones
RA5	Saber diseñar los sistemas físicos de conexión con sensores y actuadores, tanto digitales como analógicos
RA6	Conocer la clasificación de sensores digitales y analógicos; saber identificar las necesidades técnicas para conectarlos a un sistema empotrado
RA7	Conocer el formato básico de acondicionamiento de sensores analógicos (ajustes de cero y de sensibilidad, rango)
RA8	Saber usar los amplificadores operacionales (como cajas negras) para diseñar amplificadores y sumadores sencillos, y aplicarlos al acondicionamiento de sensores analógicos
RA9	Conocer las técnicas de control de motores mediante puentes en H y PWM

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

Teoría

1. Introducción a los sistemas electrónicos

- Definición de sistema empotrado.
- Elementos de un sistema empotrado: sensores, actuadores y procesador.
- Sistemas en tiempo real.

2. Teoría de circuitos

- Cómo dibujar circuitos electrónicos.
- Leyes de Kirchoff.
- Teoremas básicos: Thévenin, Norton y superposición.
- Divisores de tensión.
- Redes de una constante de tiempo. Filtrado.

3. Entradas y salidas digitales (GPIO)

- Hardware de entrada y salida básico: pulsadores, interruptores y LEDs.
- Manejo de dispositivos de salida de mayor potencia: transistores y relés.
- Manejo de entradas y salidas en la Raspberry Pi: la librería GPIO Zero.

4. Temporizadores y PWM

- La librería time.
- Generación de retardos.
- Señales PWM. Aplicaciones.
- Generación de señales PWM con GPIO Zero.

5. Conversor A/D

- Conceptos básicos: muestreo y cuantización. Aliasing.
- El conversor de aproximaciones sucesivas.
- El conversor MCP3008.
- Uso del MCP3008 con la librería GPIO Zero.

6. Amplificadores operacionales

- El amplificador operacional en lazo abierto: comparador.
- El amplificador operacional con realimentación negativa.
- Circuitos básicos con operacionales: amplificadores, sumador y diferencial.
- Saturación en tensión y en corriente.

7. Sensores resistivos de grandes variaciones

- Acondicionamiento básico: divisor de tensión.
- Acondicionamiento avanzado con operacionales.
- Linealización.

8. Programación modular y bucle de scan

- Programación modular en Python.
- Programación de sistemas empotrados: tareas y bucle de scan.

9. Máquinas de estados

- Máquinas de estados finitos.
- Implementación de máquinas de estados finitos en software.

10. Motores de corriente continua

- Motores de corriente continua.
- Accionamiento mediante transistor.
- Accionamiento mediante un puente en H. El puente L293.
- Medida de velocidad y posición: encoders.

11. Comunicaciones serie

- Ventajas de los interfaces serie frente a los paralelo.
- Comunicaciones asíncronas: la UART.
- Comunicaciones síncronas:
 - El bus I2C.
 - El bus SPI.

12. Comunicaciones inalámbricas

- Comunicación Wi-Fi.
- Comunicación Bluetooth.

Laboratorio

1. Soldadura de la tarjeta iMAT HAT

En la primera práctica se soldará una tarjeta de expansión para la Raspberry Pi diseñada en Comillas ICAI que utiliza tanto tecnología de orificio pasante como de montaje superficial (SMD).

2. Introducción al laboratorio

Se presentarán y aprenderán a manejar los instrumentos disponibles en el laboratorio (polímetros, oscilocopios, generadores de funciones...) experimentando con circuitos sencillos montados sobre una placa de prototipado.

3. Primeros pasos con la Raspberry Pi

En esta sesión los alumnos configurarán la Raspberry Pi para poder conectarse mediante SSH y XRDP (escritorio remoto), se repasarán los comandos UNIX imprescindibles para manejarla desde el terminal y se familiarizarán con el entorno de desarrollo que se utilizará durante el curso, Visual Studio Code.

4. Entradas y salidas digitales (GPIO)

Se utilizarán los diodos LED y pulsadores soldados en la tarjeta de expansión iMAT HAT para manejar las entradas y salidas digitales de la Raspberry Pi. Se hará especial énfasis en la diferencia entre la detección por nivel y por flanco.

5. Temporizadores y PWM

Se aprenderá a implementar tareas síncronas esperando a que transcurra el tiempo (polling) y usando eventos (callbacks). También se aprenderá a generar señales de modulación por ancho de pulso (Pulse Width Modulation o PWM, en inglés) para controlar actuadores como servomotores.

6. Conversor A/D y acondicionamiento de sensores

Se calibrará y acondicionará un sensor analógico, se digitalizará su medida usando el conversor analógico-digital soldado en la iMAT HAT y se utilizará el valor obtenido para controlar un actuador.

Proyecto

En la parte final de la asignatura se integrarán todos los módulos desarrollados previamente en el laboratorio en un proyecto de temática libre. El sistema elegido deberá incluir como mínimo un sensor analógico que habrá que acondicionar, un actuador y usará comunicaciones serie (por ejemplo, para incorporar un sensor o actuador digital) o inalámbricas (para enviar información a un servidor o aplicación móvil sencilla).

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

Clases magistrales expositivas y participativas. El profesor introducirá y explicará los principales conceptos de cada tema utilizando presentaciones dinámicas y pequeños ejemplos prácticos. Se fomentará la participación activa planteando preguntas abiertas para promover el debate.

CG04, CE12, CE34

Sesiones prácticas de laboratorio. Se formarán grupos de trabajo para realizar prácticas regladas con las que afianzar los conceptos teóricos y aprender a manejar el equipamiento del laboratorio.

CG04, CE12, CE34

Proyectos. Durante las últimas semanas los alumnos, organizados en grupos, elaborarán un proyecto libre que integre todos los módulos de la asignatura.

CG04, CE12, CE34

Tutorías. Se realizarán en grupo e individualmente para resolver las dudas que se planteen después de haber trabajado los distintos temas, y para orientar al alumno en su proceso de aprendizaje.

Metodología No presencial: Actividades

Estudio personal. El alumno debe realizar un trabajo personal posterior a las clases teóricas para comprender e interiorizar los conocimientos aportados en la materia.

CG04, CE12, CE34

Ejercicios prácticos y resolución de problemas. Una vez estudiados los conceptos teóricos, el alumno debe ponerlos en práctica para resolver problemas. Pasado un cierto tiempo desde su planteamiento, dispondrá de la solución y podrá solicitar tutorías con el profesor si lo necesita.

CG04, CE12, CE34

Sesiones prácticas de laboratorio. Las prácticas de laboratorio requerirán la realización de un trabajo previo de preparación y finalizarán con la redacción de un informe.

CG04, CE12, CE34

Proyectos. Se presentará una propuesta previa que incluya una planificación temporal para garantizar que el proyecto se puede realizar en el tiempo disponible. Asímismo, lo alumnos deberán adelantar fuera del aula aquellas tareas que no necesiten de equipamiento especial para aprovechar al máximo el tiempo presencial de resolución de dudas con el profesor.

CG04, CE12, CE34

RESUMEN HORAS DE TRABAJO DEL ALUMNO

	HORAS	PRESENCIALES										
Clases magistrales expositivas y participativas	Tutorías para resolución de dudas	Actividades de evaluación continua del rendimiento	Sesiones prácticas de laboratorio	Proyectos								
28.00	5.00	15.00	15.00									
	HORAS NO PRESENCIALES											
Estudio personal	Ejercicios prácticos y resolución de problemas	Sesiones practicas de laboratorio Provectos										
25.00	15.00	30.00	45.00									
CRÉDITOS ECTS: 6,0 (180,00 horas)												

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso

Prueba intersemestralExamen final	 Comprensión de los conceptos teóricos. Aplicación de estos conceptos a la resolución de problemas prácticos. Análisis crítico de los resultados numéricos. Comunicación escrita. 	45 %
PrácticasExamen de laboratorio	 Comprensión de los conceptos teóricos. Aplicación de estos conceptos a la resolución de problemas prácticos. Análisis crítico de los resultados experimentales. Comunicación oral y escrita. 	30 %
• Proyecto	 Calidad de la propuesta. Ejecución y calidad del diseño final. Dificultad. Robustez de funcionamiento. Autonomía y habilidad para resolver problemas. Comunicación oral y escrita. 	25 %

Calificaciones

Convocatoria ordinaria

El peso de cada una de las actividades de evaluación será el siguiente:

• Teoría (45%)

o Prueba intersemestral: 15%

• Examen final: 30%

• Laboratorio (55%)

• Prácticas: 15%

• Examen de laboratorio: 15%

• Proyecto: 25%

La calificación final se calculará atendiendo a estas restricciones:

- La nota de exámenes será la media ponderada de la prueba intersemestral, el examen final y el examen de laboratorio, siempre y cuando la nota del examen final sea mayor o igual que 4. En caso contrario, la nota de exámenes será el mínimo entre la media ponderada citada y la nota del examen final.
- La nota de trabajos será la media ponderada de las prácticas y el proyecto.
- Si la nota de exámenes es mayor o igual que 5 y la nota de trabajos es también mayor o igual que 5, la nota de la asignatura se obtendrá como la media ponderada entre las notas de exámenes y de trabajos. En caso contrario, la calificación final de la asignatura será la menor de ambas notas.

Convocatoria extraordinaria

En la convocatoria extraordinaria se realizan un nuevo examen final y otro de laboratorio, este último solo si estuviera suspenso. En caso

de que la nota de trabajos fuera inferior a 5, el alumno deberá realizar también un proyecto individual, que se defenderá públicamente como tarde el día del examen extraordinario y cuya calificación reemplazará a las de las prácticas y el proyecto. Se conservan las notas de la convocatoria ordinaria de todas aquellas actividades de evaluación que no deban repetirse. La calificación final se obtendrá de la misma forma que en la convocatoria ordinaria y atendiendo a las mismas restricciones.

Normativa

La asistencia a clase es obligatoria según el Artículo 93 del Reglamento General de la Universidad Pontificia Comillas y el Artículo 6 de las Normas Académicas de la Escuela Técnica Superior de Ingeniería (ICAI). El incumplimiento de esta norma, que se aplicará de forma independiente para las sesones de teoría y laboratorio, puede acarrear las siguientes consecuencias:

- Los alumnos que no asistan a más del 15% de las *sesiones de teoría* podrán perder el derecho a presentarse al examen final de la convocatoria ordinaria.
- La ausencia a más del 15% de las sesiones de laboratorio puede impedir presentarse a lo exámenes de las convocatorias ordinaria y extraordinaria. En cualquier caso, las faltas no justificadas a sesiones de laboratorio serán penalizadas en la evaluación.

Los alumnos que cometan una irregularidad en cualquier actividad calificada recibirán una nota de cero en la actividad y se abrirá un procedimiento disciplinario (cf. Artículo 168 del Reglamento General de la Universidad Pontificia Comillas).

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Prueba intersemestral	Semana 7 u 8	
Examen final	Periodo de exámenes ordinarios	
Prácticas de laboratorio	Semanalmente	
Estudio de los contenidos teóricos	Después de cada clase	
Resolución de problemas propuestos	Semanalmente	
Elaboración de informes de laboratorio	Después de cada práctica	La semana siguiente a la finalización de la práctica
Desarrollo del proyecto	Desde la semana 11	La última semana
Preparación de la prueba intersemestral	Una semana antes del examen	
Preparación del examen final	Noviembre y diciembre	

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

• Apuntes y presentaciones de la asignatura (disponibles en Moodle).

Bibliografía Complementaria

- P. Scherz y S. Monk, Practical Electronics for Inventors, 4ª Ed., McGraw Hill-Education, 2016. ISBN-13: 978-1-25-958754-2
- A. S. Sedra, K. C. Smith, T. C. Carusone y V. Gaudet, Microelectronic Circuits, 8^a Ed., Oxford University Press, 2020. ISBN-13: 978-0-190-85346-4
- P. Horowitz y W. Hill, The Art of Electronics, 3ª Ed., Cambridge University Press, 2015. ISBN-13: 978-0-521-80926-9
- E. Matthes, *Python Crash Course: A Hands-On, Project-Based Introduction to Programming*, 3^a Ed., No Starch Press, 2022. ISBN-13: 978-1-718-50270-3
- Libros de "The MagPi magazine", [En línea]. Disponible: https://magpi.raspberrypi.com/books

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

SISTEMAS ELECTRÓNICOS: PLANIFICACIÓN SEMANAL ORIENTATIVA

		TEORÍA													
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	-	S12	S13	S14
Presentación de la asignatura															
1. Introducción a los sistemas electrónicos															
2. Teoría de circuitos															
3. Entradas y salidas digitales (GPIO)								les							
4. Temporizadores y PWM								stra				_			
5. Conversor A/D								mes				Santa			
6. Amplificadores operacionales								Se				a Sa			
7. Sensores resistivos de grandes variaciones								nte				ana			
8. Programación modular y bucle de scan								as ir				Semi			
9. Máquinas de estados								- 9				0)			
10. Motores de corriente continua								Pru							
11. Comunicaciones serie															
12. Comunicaciones inalámbricas															
Repaso y preparación del examen final															

	LABORATORIO														
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	-	S12	S13	S14
1. Soldadura de la tarjeta de expansión															
2. Introducción al laboratorio								es				g			
3. Primeros pasos con la Raspberry Pi								ra				t			
4. Entradas y salidas digitales (GPIO)								iest				a Sa			
5. Temporizadores y PWM								serr				ian			
6. Conversor A/D y acondicionamiento de sensores								ter				Sem			
Examen de laboratorio								≟				0)			
Proyecto															