

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura	
Nombre completo	Sistemas Digitales I
Código	DEA-GITT-214
Título	Grado en Ingeniería en Tecnologías de Telecomunicación por la Universidad Pontificia Comillas
Impartido en	Grado en Ingeniería en Tecnologías de Telecomunicación [Segundo Curso] Grado en Ingeniería en Tecnologías de Telecom. y Grado en Análisis de Negocios/Business Analytics [Segundo Curso] Grado en Ingeniería en Tecnologías de Telecom. y Grado en Análisis de Negocios/Business Analytics [Segundo Curso]
Nivel	Reglada Grado Europeo
Cuatrimestre	Semestral
Créditos	6,0 ECTS
Carácter	Obligatoria (Grado)
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones
Responsable	José Daniel Muñoz Frías
Horario de tutorías	Solicitar cita previa

Datos del profesorado					
Profesor					
Nombre	Fermín Zabalegui Sanz				
Departamento / Área	Instituto Universitario de la Familia				
Correo electrónico	ferminzs@comillas.edu				
Profesor					
Nombre	José Daniel Muñoz Frías				
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones				
Despacho	Alberto Aguilera 25 [D-219]				
Correo electrónico	rónico daniel@icai.comillas.edu				
Teléfono	2417				
Profesores de laboratorio					
Profesor					
Nombre	Álvaro Padierna Díaz				
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones				
Correo electrónico	apadierna@icai.comillas.edu				
Profesor					
Nombre	Rubén Pascual Arteaga Mesa				
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones				

Correo electrónico	arteaga@icai.comillas.edu						
Profesor							
Nombre	Sergio Ávalos Legaz						
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones						
Correo electrónico	savalos@icai.comillas.edu						

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería Telemática, esta asignatura pretende aportar al alumno los conocimientos básicos de sistemas digitales que le permitan diseñar circuitos digitales básicos, así como entender algunos sistemas digitales complejos usados en otras asignaturas como microprocesadores o procesadores digitales de señal.

Competencias GENERALES Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, y de comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética y profesional de la actividad del ingeniero técnico de telecomunicación. CG06 Facilidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento. ESPECÍFICAS CRT09 Capacidad de análisis y diseño de circuitos combinacionales y secuenciales, síncronos y asíncronos, y de utilización de microprocesadores y circuitos integrados. CRT10 Conocimiento y aplicación de los fundamentos de lenguajes de descripción de dispositivos de hardware.

Resultados de Aprendizaje								
RA1	Manejar con soltura los sistemas de numeración binarios, así como su aritmética							
RA2	iseñar circuitos digitales, tanto combinacionales como secuenciales							
RA3	Describir estos circuitos usando el lenguaje de descripción de hardware VHDL.							
RA4	Diseñar sistemas digitales complejos, dividiendo el sistema en ruta de datos y control.							
RA5	Manejar las herramientas CAD para diseñar circuitos basados en lógica programable							

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

BLOQUE 1: Teoría

Tema 1: Introducción

- 1.1 Introducción a la técnica digital.
- 1.2 Bits y niveles lógicos.
- 1.3 Tecnologías para implantar circuitos digitales
- 1.4 Niveles de diseño.

Tema 2. Álgebra de Boole

- 2.1 Definiciones y teoremas del álgebra de boole.
- 2.2 Funciones lógicas no básicas.
- 2.3 Formas normales de una función booleana.
- 2.4 Simplificación usando diagramas de Karnaugh.

Tema 3: Sistemas de numeración

- 3.1 Sistemas de numeración posicionales.
- 3.2 Conversión entre bases.
- 3.3 Rangos.
- 3.4 Sistemas hexadecimal y octal.
- 3.5 Operaciones matemáticas con números binarios.
- 3.6 Representación de números enteros.
- 3.7 Rangos en los números con signo.
- 3.8 Operaciones matemáticas con números con signo.
- 3.9 Otros códigos binarios.

Tema 4: Introducción al lenguaje VHDL

- 4.1 Flujo de diseño.
- 4.2 Estructura del archivo.
- 4.3 Ejemplos.
- 4.4 Tipos de datos, constantes y operadores.
- 4.5 Sentencias concurrentes.

Tema 5: Circuitos Aritméticos

- 5.1 Sumador de un bit.
- 5.2 Sumador de palabras de n bits.
- 5.3 Restador de n bits.
- 5.4 Sumador/Restador de n bits.
- 5.5 Multiplicadores.
- 5.6 Sumador de números en BCD natural.

Tema 6: Bloques Combinacionales

- 6.1 Multiplexores.
- 6.2 Demultiplexores.
- 6.3 Codificadores.

- 6.4 Decodificadores.
- 6.5 Comparadores.

Tema 7. Circuitos secuenciales. Fundamentos

- 7.1 Introducción.
- 7.2 Conceptos básicos.
- 7.3 Biestables.

Tema 8. Temporización de circuitos digitales

- 8.1 Introducción.
- 8.2 Riesgos de temporización.
- 8.3 Diseño Síncrono.
- 8.4 Parámetros tecnológicos de los biestables.
- 8.5 Diseño síncrono y periodo de reloj.
- 8.6 Clock skew y distribución del reloj.
- 8.7 Sincronización de entradas asíncronas.

Tema 9: Máquinas de estados finitos

- 8.1 Nomenclatura.
- 8.2 Diseño de máquinas de estados.
- 8.3 Descripción en VHDL.
- 8.4 Detector de secuencia.
- 8.5 Detector de secuencia usando detectores de flanco.

Tema 10: Registros

- 9.1 Introducción.
- 9.2 Registros de entrada y salida en paralelo.
- 9.3 Registros de desplazamiento.

Tema 11: Contadores

- 10.1 Contador binario ascendente.
- 10.2 Contador binario descendente.
- 10.3 Contador ascendente / descendente.
- 10.4 Contadores con habilitación de la cuenta.
- 10.5 Contadores módulo m.
- 10.6 Conexión de contadores en cascada.
- 10.7 Contadores con carga paralelo.
- 10.8 Contadores de secuencia arbitraria.

Tema 12: Diseño de sistemas complejos: ruta de datos + control

- 11.1 Introducción.
- 11.2 Control de una barrera de aparcamiento.
- 11.3 Control de calidad de toros.
- 11.4 Conversor de binario a BCD.
- 11.5 Interconexión de dispositivos mediante SPI.

BLOQUE 2: Laboratorio

- Práctica 1: Introducción a las puertas lógicas integradas y al osciloscopio digital
- Práctica 2: Introducción a la captura de esquemas y la compilación con Quartus II.
- Práctica 3: Introducción a la simulación y a la implantación física con Quartus II.

Práctica 4: Circuitos combinacionales. Diseño con VHDL.

Práctica 5: Circuitos aritméticos. Sumador de 5 bits.

Práctica 6: Circuitos aritméticos. Multiplicador de 5 bits.

Práctica 7: Circuitos aritméticos. ALU de 5 bits.

Práctica 8: Introducción a los biestables.

Práctica 9: Cerradura electrónica.

Práctica 10: Control de aparcamiento.

Práctica 11: Temporizador para horno microondas.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Con el fin de conseguir el desarrollo de competencias propuesto, la materia se desarrollará teniendo en cuenta la actividad del alumno como factor prioritario. Ello implicará que tanto las sesiones presenciales como las no presenciales promoverán la implicación activa de los alumnos en las actividades de aprendizaje.

Metodología Presencial: Actividades

- 1. **Lección expositiva**: El profesor explicará los conceptos fundamentales de cada tema incidiendo en lo más importante y a continuación se explicarán una serie de problemas tipo, gracias a los cuáles se aprenderá a identificar los elementos esenciales del planteamiento y la resolución de problemas del tema.
- 2. **Resolución en clase de problemas propuestos:** En estas sesiones se explicarán, corregirán y analizarán problemas análogos y de mayor complejidad de cada tema previamente propuestos por el profesor y trabajados por el alumno.
- 3. **Prácticas de laboratorio**. Se realizara en grupos y en ellas los alumnos ejercitarán los conceptos y técnicas estudiadas, familiarizándose con el entorno material y humano del trabajo en el laboratorio.
- 4. **Tutorías** se realizarán en grupo e individualmente para resolver las dudas que se les planteen a los alumnos después de haber trabajado los distintos temas. Y también para orientar al alumno en su proceso de aprendizaje.

Metodología No presencial: Actividades

- 1. Estudio individual y personal por parte del alumno de los conceptos expuestos en las lecciones expositivas.
- 2. Resolución de problemas prácticos que se corregirán en clase.
- 3. Preparación de las prácticas.

El objetivo principal del trabajo no presencial es llegar a entender y comprender los conceptos teóricos de la asignatura, así como ser capaz de poner en práctica estos conocimientos para resolver los diferentes tipos de problemas.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES										
Clase magistral y presentaciones generales	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio								
20.00	10.00	30.00								

HORAS NO PRESENCIALES											
Estudio de conceptos teóricos fuera del horario de clase por parte del alumno	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio									
40.00	20.00	60.00									
CRÉDITOS ECTS: 6,0 (180,00 horas)											

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
• Examen Final	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	42
Controles cortos en clase.Examen intersemestral.	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	18
 Test previos. Funcionamiento de las prácticas. Documentación de los resultados. Examen final de laboratorio. 	 Compresión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos y a la realización de prácticas en el laboratorio. Manejo de las herramientas del laboratorio. Análisis e interpretación de los resultados obtenidos en las prácticas de laboratorio. Capacidad de trabajo en grupo. Presentación y comunicación escrita. 	40

Calificaciones

Convocatoria ordinaria

La evaluación del alumno consta de dos partes: teoría y laboratorio. Para evaluar la teoría se realizarán las siguientes pruebas:

- Ejercicios cortos en clase (10 minutos). El objetivo de estos ejercicios es que el alumno conozca lo que sabe (y lo que no sabe) durante la marcha del curso. La media de estos ejercicios proporciona la nota de clase n_C.
- Un examen intercuatrimestral, del que se obtendrá la nota n_i.
- ullet Un examen final que comprenderá toda la materia impartida en el curso. De este examen se obtendrá la nota $n_{e^{-}}$

Para obtener la nota final de la teoría se obtendrá una media ponderada de las notas anteriores según la siguiente fórmula:

$$n_t = n_i * 0.2 + n_e * 0.7 + n_c * 0.1$$

La evaluación del laboratorio se realiza a partir de:

- El trabajo previo de la práctica, que se evalúa mediante un test de 10 minutos al principio de la misma. De la media de todos los test se obtiene la nota n₊.
- La documentación de la práctica y el funcionamiento de los circuitos diseñados. De la media de todas las prácticas se obtiene la nota n_p.
- El examen final de laboratorio, nex.

La nota final del laboratorio se obtiene a partir de la media ponderada de las notas anteriores, siempre y cuando la nota del examen final de laboratorio sea mayor o igual a cuatro, según la fórmula siguiente:

$$n_l = n_{ex} * 0.5 + n_t * 0.3 + n_p * 0.2$$

Si la nota del examen final de laboratorio es inferior a cuatro entonces la nota final de laboratorio será la nota de dicho examen:

$$n_l = n_{ex}$$

Es obligatorio entregar todas las prácticas. Si no se ha entregado alguna de ellas, la nota del laboratorio será un cero.

Para aprobar la asignatura las notas n_t y n₁ deben ser superiores a 5. Si se cumple esta condición, La nota final de la asignatura se calcula:

$$n_{final} = n_t * 0.6 + n_l * 0.4$$

En caso contrario la nota final será la menor de las dos notas n_t y n_l.

Convocatoria extraordinaria

La convocatoria extraordinaria se considera como una segunda oportunidad en caso de que el alumno haya suspendido alguna o las dos partes de la que se compone la asignatura.

Si el alumno ha suspendido la teoría realizará el examen teórico n_{it} y se obtendrá la nueva nota de teoría según la fórmula:

$$n_t = n_{it} * 0.8 + n_i * 0.1 + n_c * 0.1$$

Si el alumno ha suspendido el laboratorio, realizará el examen de laboratorio n_{jl} y la nueva nota de laboratorio se obtendrá según la fórmula:

$$n_l = n_{il} * 0.65 + n_t * 0.15 + n_p * 0.2$$

Siempre y cuando la nota del examen de laboratorio sea mayor o igual a cuatro. En caso contrario, la nota del laboratorio será la nota de dicho examen:

$$n_l = n_{il}$$

La nota final de la convocatoria extraordinaria se obtendrá de la misma forma que la de la ordinaria: si las notas $n_t y n_l$ son superiores a 5, la nota final de la asignatura se calcula:

$$n_{final} = n_t * 0.6 + n_l * 0.4$$

En caso contrario la nota final será la menor de las dos notas $n_t y n_l$.

Normas de asistencia

La asistencia a clase es obligatoria, según las Normas Académicas de la Escuela Técnica Superior de Ingeniería (ICAI). Los requisitos de asistencia se aplicarán de forma independiente para las sesiones de teoría y de laboratorio:

- En el caso de las sesiones de teoría, el incumplimiento de esta norma podrá impedir presentarse aexamen en la convocatoria ordinaria.
- En el caso de las sesiones de laboratorio, el incumplimiento de esta norma podrá impedir presentarsea examen en la convocatoria ordinaria y en la extraordinaria. En cualquier caso, las faltas no justificadas a sesiones de laboratorio serán penalizadas en la evaluación.

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

• José Daniel Muñoz Frías. Introducción a los sistemas digitales. Un enfoque usando lenguajes de descripción de hardware. (2017)

Bibliografía Complementaria

- John F. Wakerly Digital Design: Principles and practices. 4ª Edición. (Hay versión en español de la tercera edición) Prentice Hall. 2000
- Thomas L. Floyd Fundamentos de sistemas digitales. 9ª Edición. Pearson/ Prentice Hall. 2006.

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

CRONOGRAMA Sistemas Digitales I. 2º GITT

PROGRAMA DE TEORIA	S1	S 2	S 2	S4	S 5	S6	S7	S8	S 9	S10	S11	S12	S13	S14
Tema 1. Introducción.														
Tema 2. Álgebra de Boole.														
Tema 3. Sistemas de numeración.														
Tema 4. Introducción al lenguaje VHDL														
Tema 5. Circuitos aritméticos														
Tema 6. Bloques combinacionales														
Tema 7. Circuitos secuenciales. Fundamentos														
Tema 8. Temporización de circuitos digitales														
Tema 8. Máquinas de estados finitos														
Tema 9. Registros														
Tema 10. Contadores														
Tema 11. Diseño de sistemas complejos: ruta de datos y control														

Nota. El cronograma se da por semanas de clase.

Fechas clave teoría

En amarillo Controles de clase Intercuatrimestrales

PROGRAMA DE LABORATORIO	S1	S 2	52	S4	S5	S6	S 7	S8	59	S10	S11	S12	S13	S14
P1. Introducción a las puertas lógicas integradas y al osciloscopio digital.														
P2. Introducción a la captura de esquemas y la compilación con Quartus II.														
P3. Introducción a la simulación y a la implantación física con Quartus II.														
P4. Circuitos combinacionales. Diseño con VHDL.														
P5. Circuitos aritméticos. Sumador de 5 bits.														
P6. Circuitos aritméticos. Multiplicador de 5 bits.														
P7. Circuitos aritméticos. ALU de 5 bits.														
P8. Introducción a los biestables.														
P9. Cerradura electrónica.														
P10. Control de aparcamiento.														
P11. Temporizador para horno microondas.														

Fechas clave laboratorio

En Azul Se da teoría en lugar de laboratorio En Naranja Intercuatrimestrales